Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 13: 837629, 2022.
Article in English | MEDLINE | ID: covidwho-1902997

ABSTRACT

Both qualitative and quantitative platelet abnormalities are common in patients with coronavirus disease 2019 (COVID-19) and they correlate with clinical severity and mortality. Activated platelets contribute to the prothrombotic state in COVID-19 patients. Several groups have shown immune-mediated activation of platelets in critically ill COVID-19 patients. Vaccine-induced immune thrombotic thrombocytopenia is an autoimmune condition characterized by thrombocytopenia and life-threatening thrombotic events in the arterial and venous circulation. Although the initial trigger has yet to be determined, activation of platelets by immune complexes through Fc gamma RIIA results in platelet consumption and thrombosis. A better understanding of platelet activation in COVID-19 as well as in vaccine-induced thrombotic complications will have therapeutic implications. In this review, we focused on the role of immune-mediated platelet activation in thrombotic complications during COVID-19 infection and vaccine-induced immune thrombotic thrombocytopenia.


Subject(s)
Blood Platelets/physiology , COVID-19/immunology , Purpura, Thrombotic Thrombocytopenic/immunology , SARS-CoV-2/physiology , Animals , Blood Coagulation , Humans , Platelet Activation , Vaccination/adverse effects
5.
Transfus Apher Sci ; 60(4): 103174, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1251570

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is associated with high titers of immunoglobulin G class antibodies directed against the cationic platelet chemokine platelet factor 4 (PF4). These antibodies activate platelets via FcγIIa receptors. VITT closely resembles heparin-induced thrombocytopenia. Inflammation and tissue trauma substantially increase the risk for forming pathogenic PF4 antibodies. We therefore propose the use of therapeutic plasma exchange as rescue therapy in VITT to deplete antibodies plus factors promoting inflammation such as excess cytokines in the circulation as well as extracellular vesicles derived from activated platelets.


Subject(s)
COVID-19 Vaccines/adverse effects , Plasma Exchange , Platelet Factor 4/immunology , Purpura, Thrombotic Thrombocytopenic/therapy , Salvage Therapy , Albumins , Antibody Specificity , Anticoagulants , Autoantibodies/immunology , COVID-19 Vaccines/pharmacology , ChAdOx1 nCoV-19 , Citrates , Contraindications, Procedure , Cytokines/blood , Extracellular Vesicles , Humans , Immunoglobulin G/immunology , Immunosuppression Therapy , Inflammation , Plasma Exchange/adverse effects , Plasma Exchange/methods , Platelet Activation , Platelet Transfusion/adverse effects , Purpura, Thrombotic Thrombocytopenic/etiology , Purpura, Thrombotic Thrombocytopenic/immunology , Registries , Thrombocytopenia/etiology , Thrombosis/etiology
6.
Blood ; 138(4): 299-303, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1228983

ABSTRACT

Vaccination using the adenoviral vector COVID-19 vaccine ChAdOx1 nCoV-19 (AstraZeneca) has been associated with rare vaccine-induced immune thrombotic thrombocytopenia (VITT). Affected patients test strongly positive in platelet factor 4 (PF4)/polyanion enzyme immunoassays (EIAs), and serum-induced platelet activation is maximal in the presence of PF4. We determined the frequency of anti-PF4/polyanion antibodies in healthy vaccinees and assessed whether PF4/polyanion EIA+ sera exhibit platelet-activating properties after vaccination with ChAdOx1 nCoV-19 (n = 138) or BNT162b2 (BioNTech/Pfizer; n = 143). In total, 19 of 281 participants tested positive for anti-PF4/polyanion antibodies postvaccination (All: 6.8% [95% confidence interval (CI), 4.4-10.3]; BNT162b2: 5.6% [95% CI, 2.9-10.7]; ChAdOx1 nCoV-19: 8.0% [95% CI, 4.5% to 13.7%]). Optical densities were mostly low (between 0.5 and 1.0 units; reference range, <0.50), and none of the PF4/polyanion EIA+ samples induced platelet activation in the presence of PF4. We conclude that positive PF4/polyanion EIAs can occur after severe acute respiratory syndrome coronavirus 2 vaccination with both messenger RNA- and adenoviral vector-based vaccines, but many of these antibodies likely have minor (if any) clinical relevance. Accordingly, low-titer positive PF4/polyanion EIA results should be interpreted with caution when screening asymptomatic individuals after vaccination against COVID-19. Pathogenic platelet-activating antibodies that cause VITT do not occur commonly following vaccination.


Subject(s)
Autoantibodies/immunology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Platelet Factor 4/immunology , Polyelectrolytes , Purpura, Thrombotic Thrombocytopenic/etiology , Vaccination/adverse effects , Adult , Asymptomatic Diseases , Autoantibodies/blood , BNT162 Vaccine , ChAdOx1 nCoV-19 , Female , Health Personnel , Humans , Immunoenzyme Techniques , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Platelet Activation , Purpura, Thrombotic Thrombocytopenic/immunology , Seroconversion , Thrombophilia/etiology
8.
Crit Care Med ; 49(5): e512-e520, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1185992

ABSTRACT

OBJECTIVES: Prevention and therapy of immunothrombosis remain crucial challenges in the management of coronavirus disease 2019, since the underlying mechanisms are incompletely understood. We hypothesized that endothelial damage may lead to substantially increased concentrations of von Willebrand factor with subsequent relative deficiency of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). DESIGN: Prospective controlled cross-over trial. SETTING: Blood samples of patients with confirmed coronavirus disease 2019 and healthy controls were obtained in three German hospitals and analyzed in a German hemostaseologic laboratory. PATIENTS: Seventy-five patients with confirmed coronavirus disease 2019 of mild to critical severity and 30 healthy controls. MEASUREMENTS AND MAIN RESULTS: von Willebrand factor antigen, ADAMTS13, and von Willebrand factor multimer formation were analyzed. von Willebrand factor antigen was 4.1 times higher in COVID-19 patients compared with healthy controls (p < 0.0001), whereas ADAMTS13 activities were not significantly different (p = 0.18). The ADAMTS13/von Willebrand factor antigen ratio was significantly lower in COVID-19 than in the control group (24.4 ± 20.5 vs 82.0 ± 30.7; p < 0.0001). Fourteen patients (18.7%) undercut a critical ratio of 10 as described in thrombotic thrombocytopenic purpura. Gel analysis of multimers resembled a thrombotic thrombocytopenic purpura pattern with loss of the largest multimers in 75% and a smeary triplet pattern in 39% of the patients. The ADAMTS13/von Willebrand factor antigen ratio decreased continuously from mild to critical disease (analysis of variance p = 0.026). Furthermore, it differed significantly between surviving patients and those who died from COVID-19 (p = 0.001) yielding an area under the curve of 0.232 in receiver operating characteristic curve curve analysis. CONCLUSION: COVID-19 is associated with a substantial increase in von Willebrand factor levels, which can exceed the ADAMTS13 processing capacity resulting in the formation of large von Willebrand factor multimers indistinguishable from thrombotic thrombocytopenic purpura. The ADAMTS13/von Willebrand factor antigen ratio is an independent predictor of severity of disease and mortality. These findings provide a rationale to consider plasma exchange as a therapeutic option in COVID-19 and to include von Willebrand factor and ADAMTS13 in the diagnostic workup.


Subject(s)
ADAMTS13 Protein/deficiency , COVID-19/blood , COVID-19/immunology , Purpura, Thrombotic Thrombocytopenic/immunology , SARS-CoV-2/immunology , von Willebrand Factor/metabolism , Aged , Aged, 80 and over , Cross-Over Studies , Female , Germany/epidemiology , Humans , Male , Middle Aged , Plasma Exchange , Prospective Studies , Purpura, Thrombotic Thrombocytopenic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL